ALDA Algorithms for Online Feature Extraction
نویسندگان
چکیده
In this paper, we present new adaptive algorithms for the computation of the square root of the inverse covariance matrix. In contrast to the current similar methods, these new algorithms are obtained from an explicit cost function that is introduced for the first time. The new adaptive algorithms are used in a cascade form with a well known adaptive principal component analysis (APCA) to construct linear discriminant features. The adaptive nature and fast convergence rate of the new adaptive linear discriminant analysis (ALDA) algorithms make them appropriate for on-line pattern recognition applications. All adaptive algorithms discussed in this paper are trained simultaneously using a sequence of random data. Experimental results using the synthetic and real multi-class, multi-dimensional input data demonstrate the effectiveness of the new adaptive algorithms to extract the optimal features for the classification purpose.
منابع مشابه
Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملA RELIEF Based Feature Extraction Algorithm
RELIEF is considered one of the most successful algorithms for assessing the quality of features due to its simplicity and effectiveness. It has been recently proved that RELIEF is an online algorithm that solves a convex optimization problem with a marginbased objective function. Starting from this mathematical interpretation, we propose a novel feature extraction algorithm, referred to as LFE...
متن کاملExtracting Named Entities Using Named Entity Recognizer and Generating Topics Using Latent Dirichlet Allocation Algorithm for Arabic News Articles
This paper explains for the Arabic language, how to extract named entities and topics from news articles. Due to the lack of high quality tools for Named Entity Recognition (NER) and topic identification for Arabic, we have built an Arabic NER (RenA) and an Arabic topic extraction tool using the popular LDA algorithm (ALDA). NER involves extracting information and identifying types, such as nam...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012